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Abstract
Resilience in executive functioning (EF) is characterized by high EF measured by
neuropsychological test performance despite structural brain damage from neurodegenerative
conditions. We previously reported single nucleotide polymorphism (SNP) genome-wide
association study (GWAS) results for EF resilience. Here, we report gene- and pathway-based
analyses of the same resilience phenotype, using an optimal SNP-set (Sequence) Kernel
Association Test (SKAT) for gene-based analyses (conservative threshold for genome-wide
significance = 0.05/18,123=2.8×10−6) and the gene-set enrichment package GSA-SNP for
biological pathway analyses (False discovery rate (FDR) < 0.05). Gene-based analyses found a
genome-wide significant association between RNASE13 and EF resilience (p=1.33×10−7). Genetic
pathways involved with dendritic/neuron spine, presynaptic membrane, postsynaptic density etc.
were enriched with association to EF resilience. Although replication of these results is necessary,
our findings indicate the potential value of gene- and pathway-based analyses in research on
determinants of cognitive resilience.
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Introduction
Cognitive impairment and dementia lead to immense personal, family, and economic
devastation in the US and worldwide. Structural brain damage from vascular and
degenerative diseases is common in community-based elderly and can precipitate cognitive
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impairment and dementia. Covert brain infarcts (Longstreth et al. 1998; Longstreth et al.
2002; Vermeer et al. 2007) and white matter hyperintensities (WMH) (Ikram et al. 2007;
Longstreth et al. 1996; Debette and Markus 2010; National Bioethics Advisory
Commission) are also common findings on magnetic resonance imaging (MRI) scans of
elderly people without dementia, stroke, or transient ischemic attack. The increasing
prevalence of these vascular lesions occurs in parallel with rising incidence of Alzheimer’s
disease with age (Kukull et al. 2002). Most elderly people have pathological lesions by the
time they die (Sonnen et al. 2007).

Imaging and pathology-defined lesions need not cause dementia during life (Sonnen et al.
2011). Although structural brain changes are common findings on MRI, some people appear
to be resilient to cognitive deficits in the presence of these findings. People with essentially
similar lesions can have dementia, no symptoms at all or anything in between.

An extensive literature addresses the gap between brain damage and retained cognitive
functioning, often referred to as “cognitive reserve” (Stern 2002, 2003). Many have focused
on identifying modifiable factors that can increase reserve (Scarmeas and Stern 2003).
Although biological substrates of reserve have been investigated (Whalley et al. 2004), to
our knowledge, the only paper on genome-wide variability associated with reserve was our
earlier investigation.

Reed and colleagues (Reed et al. 2010) introduced the idea of operationalizing reserve as
residual cognitive functioning after accounting for MRI-identified brain damage. Cognitive
resilience describes people whose cognitive functioning is better than predicted based on
their neuroimaging and demographic characteristics. We emphasize our focus on better-
than-predicted cognition by using the term “resilience” (Negash et al. 2011). Most
importantly, this specific phenotype can be interrogated using modern genetic investigation.

Disease-based genetic discovery is an important line of investigation that promises to
improve our understanding of conditions associated with late-life cognitive losses. These on-
going investigations offer the hope of identifying modifiable biological targets to reduce the
burden of specific diseases. Resilience represents a complementary line of investigation that
addresses why some people may be able to accumulate neuropathologic changes without
expressing clinical dementia. In our previous investigation, we found that resilience was
highly heritable (h2=0.76 with a standard error of 0.44) (Mukherjee et al. 2012a).

Genome-wide association studies (GWAS) are an important first step with genome-wide
single nucleotide polymorphism (SNP) data. Additional gene-based and pathway-based
analyses may further contribute to understanding associations between genetic variants and
phenotypes of interest. For example, Peng and colleagues (Peng et al. 2010) reported that
gene-specific, rather than SNP-specific, analyses identified variants associated with several
phenotypes that were not associated at genome-wide significance thresholds with any
individual SNP. Genes identified in this fashion in a single cohort were confirmed by meta-
analysis of data from multiple cohorts, suggesting that gene-based analyses may further
illuminate SNP-based analyses for any given sample size and may also be more replicable
than SNP-based analyses (Peng et al. 2010).

Beyond gene-based models, there is increasing recognition of the potential contributions of
pathway-based analyses, in which variants in groups of genes that operate along a single
physiologic or developmental pathway are considered together to predict the phenotype of
interest (Ramanan et al. 2012b). This approach identifies pathways exhibiting an enrichment
of genetic associations to the phenotype. Thus, we proposed that a three-component
approach — combining SNP-, gene-, and pathway-based analyses of genome-wide SNP data
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— is likely to best illuminate associations between genetic variants and phenotypes. (Peng et
al. 2010). To identify additional genetic mechanisms underlying EF resilience, we
complemented our previous GWAS with gene- and pathway-based analyses of high-density
genotype data.

Methods
Alzheimer’s Disease Neuroimaging Initiative

Data used for this study were obtained from the ADNI database (http://adni.loni.ucla.edu/).
The ADNI was initiated in 2003 by the National Institute on Aging (NIA), the National
Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug
Administration (FDA), private pharmaceutical companies and non-profit organizations. The
primary goal of ADNI-1 was to test whether serial MRI, PET, other biological markers, and
clinical and neuropsychological assessments can be combined to measure the progression of
MCI and early AD. Determination of sensitive and specific markers of very early AD
progression is intended to aid researchers and clinicians to develop new treatments and
monitor their effectiveness, as well as lessen the time and cost of clinical trials. Michael W.
Weiner, MD, VA Medical Center and University of California-San Francisco was the
Principal Investigator of this initiative. This $60 million, multiyear public-private
partnership involved many co-investigators from a broad range of academic institutions and
private corporations. More than 800 participants, aged 55 to 90, were recruited from across
more than 50 sites in the US and Canada. Longitudinal imaging data, including structural 1.5
Tesla MRI scans, were collected on the full sample. Neuropsychological and clinical
assessments were collected at baseline, and at follow-up visits of six-to-twelve month
intervals. Other available data used in the present analysis included APOE genotype and
genome-wide SNP data obtained in the full ADNI-1 sample, as outlined in (Saykin et al.
2010). Further information about ADNI can be found in (Weiner et al. 2010) and at http://
www.adni-info.org. The study was conducted after Institutional Review Board approval at
each site. Written informed consent was obtained from all study participants, or their
authorized representatives.

1.5 T MRI Neuroimaging
All participants received 1.5 Tesla structural magnetic resonance imaging (MRI). The
neuroimaging methods utilized by ADNI-1 have been described in detail previously (Jack et
al. 2008) utilizing calibration techniques to maintain consistent protocols across scanners
and sites. Raw dicom data of T1-weighted MP-RAGE scans acquired from 1.5 Tesla
scanners at baseline visits from all participants were obtained via the ADNI-1 database
(http://www.loni.ucla.edu/ADNI/). In our analyses we used presence of one or more lacunes,
cortical volume (summed across entorhinal cortex, fusiform, pars triangularis, caudal middle
frontal, superior frontal, medial orbitofrontal, rostral, middle frontal, and lateral
orbitofrontal, controlling for intracranial volume), volume of bilateral hippocampus
(controlling for intracranial volume), and the natural log of WMH volume.

Psychometric composites for memory and executive functioning
ADNI-1 participants received an extensive neuropsychological assessment battery at each
study visit, including several measures of memory and executive function. We applied
modern psychometric theory to item-level data from the ADNI-1 neuropsychological battery
to develop composite scores separately for memory (ADNI-Mem) and executive functioning
(ADNI-EF). For executive functioning, we found that a bi-factor model had the best fit to
the data. We extracted factor scores for the general factor defined by all of the items from
Mplus v5 (Muthén and Muthén 2006); this factor score is the ADNI-EF score. For memory,
we used a longitudinal single factor model to account for different versions of the ADAS-
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Cog and of the Rey AVLT. We used parameters from that model to generate scores at each
study visit, also using Mplus (Muthén and Muthén 2006). Further details are provided in
previously published papers (Crane et al. 2012; Gibbons et al. 2012).

Genotyping and Quality Control
The ADNI-1 sample was genotyped using the Human 610-Quad BeadChip (Illumina, Inc.,
San Diego, CA), resulting in 620,901 SNP and copy number variant (CNV) biomarkers. The
genotyping protocol followed the manufacturer’s instructions and is explained in detail in
(Saykin et al. 2010).

Standard quality control procedures were performed on the ADNI genotype data using
PLINK v1.07 (Purcell et al. 2007). Samples were excluded based on the following criteria:
(1) call rate per individual < 95%, (2) ambiguous sex identification, (3) identity check with
PI_HAT> 0.125 after exclusion of individuals with no genetic consent. Markers were
excluded based on the following criteria: (1) call rate per SNP < 95%, (2) Hardy-Weinberg
equilibrium test in controls < 10−6, (3) minor allele frequency (MAF) < 1%.

APOE was genotyped at the time of screening. The two previously established APOE
genotype SNPs (rs429358, rs7412) that characterize the ε2/ε3/ε4 alleles were not available
on the Human610-Quad BeadChip array (Illumina, Inc., San Diego, CA). These SNPs were
genotyped by PCR amplification followed by HhaI restriction enzyme digestion and
Metaphor Gel and were available in the ADNI database (Potkin et al. 2009). They were
added to the ADNI-1 genotype data based on the reported APOE ε2/ε3/ε4 status before the
assessment of sample quality.

To limit possible confounding effects of population ancestry, we restricted analyses to non-
Hispanic Caucasian participants. To select non-Hispanic Caucasian participants in the ADNI
cohort, 988 founders of HapMap (The International HapMap Project 2003) phase 3 samples
were used as reference populations which consist of 11 known population and PLINK
multidimensional scaling analysis was performed on the combined genotype data of the
ADNI-1 and the HapMap phase 3 release 2. ADNI participants were selected if they were
grouped together with the HapMap CEU (Utah residents with Northern and Western
European ancestry from the Centre d’Etude du Polymorphisme Humain (CEPH) collection)
or TSI (Toscani in Italy) participants. After the QC procedure and exclusions for withdrawal
of consent, 694 participants and 531,096 single nucleotide polymorphisms (SNPs) were
selected for the subsequent analyses and the genotyping rate in the remaining samples was
≥0.995.

Population substructure
Population substructure was evaluated using Eigenstrat v4.2 (Price et al. 2006). The
observed SNPs which passed quality control were linkage disequilibrium LD-pruned (a) in a
window size of 1500 SNPs calculate pairwise LD between each pair of SNPs, b) remove one
of a pair of SNPs if the LD is greater than 0.2 and then c) shift the window 150 SNPs
forward and repeat the procedure) and Eigenstrat was used to derive loadings for the
principal components (PCs) which were used to adjust for population substructure to
minimize spurious associations and maximize power to detect true associations.

Genotype Imputation
We used the ENIGMA protocol to pre-process the genotype data(ENIGMA2 Genetics
Support Team 2012). Briefly, PLINK was used to exclude SNPs on the basis of standard
quality control (QC) criteria, e.g., low MAF (<0.01), poor genotype calling (call rate <
95%), 90% call rate per individual and deviations from Hardy–Weinberg equilibrium (<
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10−6). To obtain genotypes for SNPs not characterized on the GWAS array, genome-wide
imputation was performed with Mach software (Li et al. 2010) using NCBI 1000 Genomes
build 37 (UCSC hg19) as the reference panel. We took forward SNPs with imputation
quality estimates of R2 ≥ 0.50 and performed further QC (95% call rate; 1% MAF and
Hardy-Weinberg equilibrium test in controls < 10−6).

GWAS analysis
We performed a GWAS on the executive functioning composite adjusting for the memory
composite, demographics, Hachinski score (a measure of the vascular component of
dementia (Hachinski et al. 1975), brain imaging parameters and population substructure
(first three principal components) to examine the main effect of each SNP using PLINK
(Purcell et al. 2007) using the 1000G imputed data. Compared to our previous analysis
(Mukherjee et al. 2012a), this study utilized genotype data with substantially increased
genomic coverage due to imputation.

Gene-wide analysis using SKAT-O
We mapped SNPs to genes using the b137 annotation file downloaded from the dbSNP
website (http://www.ncbi.nlm.nih.gov/projects/SNP/, accessed on 11/30/2011). We assigned
3,377,248 SNPs to each of 18,123 autosomal genes according to genomic positions on the
UCSC Genome Browser hg19 assembly, using the official gene boundaries as delimiters
(i.e., no extended gene window was used). The joint effects of variants in each of these gene
regions were tested for association with resilience using Sequential Kernel Association test
(SKAT).

Burden tests are commonly used for rare variant analysis, and are more powerful when a
large proportion of variants are causal and effects are in the same direction (Lee et al. 2012).
SKAT is more powerful when a small proportion of variants are causal, or the effects have
mixed directions (Lee et al. 2012). SKAT uses a multiple regression model to directly
regress the phenotype on genetic variants in a region and on covariates, using a variance
component score test to account for rare variants. SKAT is a score test, so type I error rates
are protected for any choice of weights.

Both scenarios for causality and direction are plausible when the underlying biology is
unknown. We used the Optimal Unified Test (SKAT-O), which uses data to adaptively
estimate ρ to maximize power and minimize p-values (Lee et al. 2012) where the SKAT-O
test statistic is given by:

where SKAT (ρ = 0) and Burden (ρ = 1) are special cases. This method was developed for
rare variant analyses, but can be used for common variants if we specify a β1,1 (uniform)
weight on each of the SNPs.

Similar to the GWAS model, we performed a gene-wide analysis on the executive
functioning composite adjusting for the memory composite, demographics, Hachinski score,
brain imaging parameters and population substructure.

Pathway analysis
Pathway analysis of the GWAS results was performed to identify functional gene sets with
important association with the resilience phenotype. We used the GSA-SNP package (Nam
et al. 2010) to identify pathways with enrichment of association to EF resilience. This
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software uses a competitive enrichment algorithm (Goeman and Bühlmann 2007), where the
null hypothesis holds that a pathway-phenotype association is not different from all other
pathway-phenotype associations under analysis. Competitive enrichment strategies are
robust to the effects of genomic inflation due to population stratification or other
confounding factors (Holmans 2010; Fridley and Biernacka 2011). In GSA-SNP, the
significance score for each gene under analysis was calculated as the −log of the k-th best
SNP-level p-value in the gene. Corresponding with the authors’ recommendation (Nam et al.
2010), we selected k=2 to limit the effects of both single, highly-significant loci and of
spurious SNP-level associations on driving pathway enrichment (Ramanan et al. 2012a).

We used the Gene Ontology database to define gene sets representing biological pathways.
1454 gene sets were examined out of which 825 were biological processes, 233 were
cellular components and 396 were molecular functions. Each gene set (representing a
pathway) was then assessed for phenotype enrichment by the Z-statistic method (Kim and
Volsky 2005), which incorporates the gene-wide significance scores and the number of
genes within each set. In addition, since small pathways can exhibit spurious phenotype
associations due to large single locus effects (Holmans 2010), and since large pathways are
more likely to exhibit association by chance alone (Elbers et al. 2009), we restricted
analyses to gene sets containing 5–200 genes. To correct for multiple hypothesis testing, we
applied the False Discovery Rate (FDR) (Benjamini and Hochberg 1995) to the p-values
generated by the enrichment algorithm (Ramanan et al. 2012a).

Results
SNP association findings

Of the 692 individuals who passed sample quality control, complete data were available for
681 of them (Table 1). The genomic inflation factor (λ) with three principal components was
1.0 for the GWAS analysis. Similar to the results reported in our earlier paper (Mukherjee et
al. 2012b), the top two SNPs resided in the RNASE13 (ribonuclease, RNase A family, 13)
gene region. The top SNP in this analysis was rs3648346 (Chr 14) with an unadjusted p-
value of 6.43×10−8. rs3648348, which was reported in our earlier paper (Mukherjee et al.
2012b), was also suggestive with a p-value of 1.18×10−7. A list of top SNPs for this analysis
can be found in Table A in the Appendix.

Gene-based analyses
The most significant genes are summarized in Table 2. RNASE13 with a p-value of
1.33×10−7 had a genome-wide level of significance (0.05/18,123=2.8×10−6). Other genes
with suggestive associations included Fatty Acyl CoA Reductase 2 (FAR2) and Tubulin
Polymerization-Promoting Protein (TPPP2).

Pathway analysis
We identified 111 pathways with enrichment of association to EF resilience (FDR p <0.05).
The top 20 pathways in terms of p-value and FDR are presented in Table 3 and a complete
list of the 111 enriched pathways are provides in Supplementary Table 1. The top pathways
were related to dendritic/neuron spine, presynaptic membrane, and postsynaptic density.
Some genes associated with late-onset AD such as PTK2B, PICALM, MS4A2, APP were
present in the top 10 pathways (See Supplementary Table 1). The p-values for SNPs in these
genes or for the genes themselves were unremarkable in the GWAS analyses (Mukherjee et
al. 2012a).
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Discussion
In these analyses of the executive functioning resilience phenotype, we identified one gene
— RNASE13 — with a genome-wide significant association, and found associations of
pathways related to dendritic/neuron spine, presynaptic membrane, and postsynaptic density.
RNASE13 has only two SNPs in the data set, one of which (rs3748348) is observed and the
other (rs3748346) is imputed. Replication analyses will be critical to determine the
relevance of RNASE13 to this phenotype.

Beyond RNASE13, gene-based analyses showed partial but not complete overlap with our
previously reported SNP results (Mukherjee et al. 2012a). SNPs in TPPP2 are in close LD
with SNPs in RNASE13, as noted in our previous paper (Mukherjee et al. 2012a). None of
the individual SNPs in TPPP2 were closely associated with our phenotype (the smallest p-
value was 2.5×10−5 for rs1243459). Our gene-based analyses strengthened our interest in
RNASE13 and TPPP2. The optimized SKAT-O approach accounts for the proportion of
variants which may be causal and have mixed directions of the effects of SNPs which map
to a gene. This gene-wide approach we used enabled us to summarize SNP heterogeneity
(direction of effects) within each gene with a single number. This is biologically-meaningful
for a complex trait like EF resilience where true associated genes are likely to have
combinations of variants with heterogeneous effect sizes and directions depending on the
population being analyzed. Gene-based (and pathway-based) analyses can overcome this
relative limitation of SNP-based approaches.

This reduced the number of statistical tests performed and enabled us to discern signals from
combinations of SNPs that were not visible when we focused on only individual SNPs as is
usual with SNP-based GWAS.

Our identification of reinforcing associations between the executive functioning resilience
phenotype and pathways fundamental to production and loss of neurons, fate determination,
and pre- and post-synaptic structure and function raises obvious potential links between
neuron biology and resilience to neurodegenerative disease. Several of these pathways have
previously been implicated in LOAD, in research on the loss and alteration of dendritic
spines induced by amyloid β (Aβ) in adults (Knobloch and Mansuy 2008), and in aberrations
in synapse composition, shape and density induced by Aβ oligomers (Lacor et al. 2007).
Synaptic proteins found in presynaptic membranes were found to be differentially affected
in AD brains compared to controls which suggest differential involvement of synaptic
components in AD (Shimohama et al. 1997). Brains affected with Alzheimer’s disease show
a reduced number of synapses, and stereological and biochemical analysis has shown that
this reduction in synaptic density correlates better with cognitive decline than with the
accumulation of plaques (Harel et al. 2008; Harold et al. 2009). Furthermore, expression
studies indicate that there are differences in expression of genes that regulate neuron
differentiation between people with AD and cognitively normal controls (Blalock et al.
2011). Further studies investigating the significance of these pathways appear warranted
given the present results. Caution is certainly warranted when interpreting these results,
given that this is a first report based on a relatively small sample. It will also be critical to
assess disease associations with genes associated with the cognitive resilience phenotype
and AD or other neurodegenerative diseases.

Gene-based and pathway-based analyses afford the opportunity to detect complementary
information that would not have been easily observed from SNP-based GWAS alone.
Applying these complementary approaches to standard GWAS, we were able to identify
additional biological underpinnings of EF resilience.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix
Table A

Top SNPs for GWAS of executive functioning resilience

CHR SNP Base Position Minor Allele Beta P-value Nearest Gene

14 rs3748346 21501095 C .21 6.43×10−8 RNASE13

14 rs3748348 21501195 A .20 1.18×10−7 RNASE13

14 rs112249116 75566463 T .45 5.74×10−7 NEK9

14 rs72736225 75564726 A .45 5.74×10−7 NEK9

14 rs7143599 75613178 T .45 5.81×10−7 TMED10

14 rs72736242 75588320 A .45 5.81×10−7 NEK9

14 rs72736209 75540434 G .45 8.71×10−7 ZC2HC1C

14 rs72734300 75530066 T .45 8.71×10−7 ACYP1

14 rs72736204 75535153 A .45 8.71×10−7 ZC2HC1C

14 rs68179743 75507657 A .44 1.12×10−6 MLH3

6 rs6933137 166142202 G .53 4.05×10−6 PDE10A

6 rs6908907 166141724 A .53 4.05×10−6 PDE10A

6 rs11962446 166153398 A .52 4.33×10−6 PDE10A

6 rs59751101 166165863 G .52 4.33×10−6 PDE10A

6 rs59392157 166167530 C .52 4.33×10−6 PDE10A

6 rs6921426 166149261 T .52 4.33×10−6 PDE10A

6 rs11970244 166174747 C .52 4.42×10−6 PDE10A

12 rs10771511 29437217 C -.16 6.62×10−6 FAR2

2 rs16987794 20748761 C .23 7.88×10−6 HS1BP3

6 rs6912825 166160068 T .50 8.58×10−6 PDE10A
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Table 1

Description of participants included in the analyses

Baseline diagnosis NCa MCIa ADa Total

# of participants 189 330 162 681

Sex: (M/F) 105/84 214/116 89/73 408/273

Age 76.0 (4.9) 75.0 (7.4) 75.8 (7.4) 75.5 (6.8)

Education (years) 16.1 (2.7) 15.8 (3.0) 14.9 (3.1) 15.6 (2.9)

ADNI-Mem 0.96 (0.5) −0.09 (0.6) −0.87 (0.6) 0.02 (0.9)

ADNI-EF 0.72 (0.7) 0.01 (0.8) −0.92 (0.8) −0.01 (1.0)

Hachinski score 0.54 (0.7) 0.61 (0.7) 0.67 (0.7) 0.60 (0.7)

Stroke/Infarcts (Y/N) 17/172 28/302 13/149 58/623

Cerebral cortex thickness (mm) −186.29 (19.6) −196.18 (21.1) −202.27 (22.4) −194.88 (21.8)

Hippocampal volume (cm3) 0.43 (0.4) −0.06 (0.5) −0.41 (0.5) −0.01 (0.6)

White matter hyperintensities volume (cm3)b −1.56 (1.6) −1.39 (1.7) −0.85 (1.6) −1.31 (1.7)

*
All summary statistics for variables are reported as Mean (S.D) unless otherwise noted

a
NC → Normal Controls; MCI → Mild Cognitive Impairment patients; AD → Alzheimer’s Disease cases

b
White matter hyperintensities was natural log-transformed
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Table 2

Top 10 Genes for resilience using SKAT-O (in terms of p-values).

Gene Chr # SNPs mapped to the gene SKAT-O Beta(1,1) P-value

RNASE13 14 2 1.33×10−7

FAR2 12 189 3.72×10−5

TPPP2 14 2 9.60×10−5

MLH3 14 13 1.15×10−4

BIRC3 11 4 1.30×10−4

GDPD1 17 14 1.31×10−4

GTF3C5 9 35 1.50×10−4

TLE2 19 15 2.19×10−4

FECH 18 56 2.49×10−4

STXBP5L 3 1064 2.58×10−4
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Table 3

Top canonical pathways (False Discovery Rate < 0.0001) for resilience of executive functioning.

Pathway (gene set) name Set sizea Uncorrected P-value

Dendritic/Neuron spine 151 (131) 1.27×10−12

Presynaptic membrane 47 (42) 8.68×10−11

Postsynaptic density/Dendritic spine head 111 (100) 2.00×10−10

Calcium ion transmembrane transporter activity 109 (104) 3.75×10−10

Ras guanyl-nucleotide exchange factor activity 93 (86) 4.67×10−10

Rho guanyl-nucleotide exchange factor activity 75 (68) 9.33×10−10

Calmodulin binding 161 (150) 1.11×10−9

Calcium channel activity 92 (89) 1.89×10−9

Guanyl-nucleotide exchange factor activity 167 (151) 2.91×10−9

Cell adhesion molecule binding 52 (46) 5.06×10−9

Synaptic membrane 204 (179) 9.49×10−9

Divalent inorganic cation transmembrane transporter activity 129 (120) 3.21×10−8

Transmembrane receptor protein tyrosine phosphatase activity 18 (18) 3.53×10−8

Regulation of phospholipase C activity 65 (61) 5.22×10−8

Voltage-gated ion channel activity 177 (156) 5.41×10−8

Positive regulation of phospholipase C activity 64 (60) 5.54×10−8

Chloride channel activity 72 (60) 8.36×10−8

Axon part 121 (106) 8.48×10−8

Synapse organization 83 (71) 1.03×10−7

cAMP metabolic process 32 (30) 1.38×10−7

a
Entries are displayed as: number of genes in the set (number of genes from the GWA data)

Brain Imaging Behav. Author manuscript; available in PMC 2015 March 01.


